AS CAST VENTURI TUBE

For a better accuracy

GENERAL DATA

- Standards: ISO 5167-1&4 or ASME MFC-3M
- Weld-end (BW) or flanged connection(1)
- Material:
 - o Standard: carbon steel, stainless steel
 - o Others(1): according to your application
- Fluid: liquid, gas, steam
- Pipes from φ 100 to 1 200 mm
- Accuracy: 0.7 % of the max flow rate
- Repeatability of measurement: 0.1 %

Upstream and throat pressure taps: annular chambers or four tappings with a «triple-T» arrangement

TECHNICAL CHARACTERISTICS			ISO 5167-1&4	ASME MFC-3M
1	Re _D	Reynolds number in the pipe	$2.10^5 \le \text{Re}_{D} \le 2.10^6$	$2.10^5 \le \text{Re}_{\text{D}} \le 6.10^6$
	D	Inside pipe diameter	100 mm ≤ D ≤ 800 mm	100 mm ≤ D ≤ 1 200 mm
	ß	d/D	0.30 ≤ β ≤ 0.75	
	Ra	Throat roughness	Ra≤10 ⁻⁴ .d	
		Entrance cylinder and convergent roughness	Ra≤10 ⁻⁴ .D	
1	I	Entrance cylinder minimal length	l = D ou ⁽²⁾ (0.25.D + 250 mm)	
	l'	Entrance convergent length	l' = 2.7.(D - d)	
	α	Entrance convergent angle	$\alpha = 21^{\circ} \pm 1^{\circ}$	
	lc	Throat length	$lc = d \pm 0.03.d$ (minimum value = d/3)	
	R ₁	Radius of curvature 1 between the entrance cylinder and the convergent section	R ₁ = 1.375.D ± 0.275.D	
	R ₂	Radius of curvature 2 between the convergent section and the throat	$R_2 = 3.625.d \pm 0.125.d$	
	R ₃	Radius of curvature 3 between the throat and the divergent section	5.d < R ₃ < 15.d	
	φ	Exit divergent angle	$7^\circ \le \varphi$	≤ 15°

⁽¹⁾ For more details, see «Technical information» section on page 54.
⁽²⁾ Consider the smaller value.