SIMPLE ORIFICE RESTRICTION ORIFICE

Cost-saving solution

GENERAL DATA

- Design based on ISO 5167, ASME MFC-3M
- or R.W. Miller standards - Flange mounting⁽¹⁾:
 - o ISO PN 2.5 to PN 420
 - o ASME 150# to 2500#
 - o Others: upon request
- Material:

- o Standard: stainless steel 304L / 316L
- o Others⁽¹⁾: according to your application
- Fluid: liquid, gas, steam
- For all pipe sizes

Optional: stellite coating⁽¹⁾

TECHNICAL DESCRIPTION

Orifice diameter	Sized according to the fluid, to the desired pressure drop and flow rate when passing through the restriction.
Plate thickness	Calculation based on the pressure drop created by the plate and the piping inside diameter to prevent plate deformation during operation.
Noise	Noise level control estimated at 1 m. In the event of a high noise level, refer to the multi- hole plate - see page 35.
Cavitation ⁽²⁾	The level of cavitation is checked for each plate. In the presence of cavitation, a multistage alternative can be proposed depending on the operating conditions of the restriction.
Critical flow or Choked flow ⁽²⁾	If the fluid reaches its maximum speed when passing through the restriction, its flow rate can no longer increase. A multi-stage solution can be proposed depending on the operating conditions of the restriction - see page 37.

 $^{(1)}$ For more details, see «Technical information» section on page 54.

⁽²⁾ For more details, see page 36.