PRESSURE
 TRANSMITTER

To convert the pressure measurement into an output signal

OPERATING PRINCIPLE

A differential pressure sensor is a device that accurately measures a differential pressure ($\Delta \mathrm{P}=$ upstream pressure - downstream pressure) and converts it into a 4-20 mA output signal. The flow is calculated with the following formula:

Differential pressure transmitter
q_{m} mass flow in kg/s
k constant
ΔP differential pressure in bar
ρ density of the fluid in $\mathrm{kg} / \mathrm{m}^{3}$

The density ρ of an incompressible fluid is constant at a given temperature (liquids can be considered as incompressible). The density ρ of a compressible fluid (gas) varies according to its pressure and its temperature. Thus, the choice of transmitter will be as follows:
\(\left.$$
\begin{array}{|c|c|c|}\hline \text { LIQUID } & \text { GAS } \\
\hline \begin{array}{c}\text { CONSTANT } \\
\text { TEMPERATURE }\end{array} & \begin{array}{c}\text { CONSTANT TEMPERATURE } \\
\text { AND PRESSURE }\end{array}
$$ \& VARIABLE TEMPERATURE

AND PRESSURE\end{array}\right]\)| MULTIVARIABLE TRANSMITTER |
| :--- |
| allows to correct* the pressure and |
| temperature variations of the gas when |
| coupled to a temperature sensor |

*This correction can also be obtained with a differential pressure transmitter, a temperature sensor, a pressure transmitter and a calculator

The pressure transmitter can be placed in a closed insulating or temperature controlled housing. In a critical environment (temperature, humidity, etc.), the housing protects instrumentation accessories.

Special case of assembly with 2 transmitters: rangeability ${ }^{(1)}$ increased from $1 / 6$ to $1 / 36$. Thus, the measurement uncertainty remains low over a range from 2% to 100% of the max flow rate.

The housing is also available in a simple sun protection version to protect the accessories from direct sunlight.

[^0]
[^0]: ${ }^{(1)}$ For more details, see «Technical information» section on page 80

